| Minimum tensile strength (p.s.i.) welded condition 3,4 | Minimum
elongation in
2 inches
(percent) 0
temper weld
metal (longi-
tudinal) | |--|---| | 25,000 | 18 | | 38,000 | 16 | | 35,000 | 14 | | 30,000 | 18 | | 30,000 | 18 | | 31,000 | 18 | | 25,000 | 18 | | | sile strength
(p.s.i.) weld-
ed condi-
tion ^{3.4} 25,000 38,000 35,000 30,000 30,000 31,000 | ¹For fabrication, the parent plate material may be 0, H112, or H32 temper, but design calculations must be based on minimum tensile strength shown. (d) High alloy steel plate: High alloy steel plate must comply with one of the following specifications: | Specifications | Minimum ten-
sile strength
(p.s.i.) weld-
ed condition ¹ | Minimum
elongation in
2 inches
(percent)
weld metal
(longitudinal) | |--|--|---| | ASTM A 240/A 240M (incorporated by reference; see § 171.7 of this subchapter), | | | | Type 304
ASTM A 240/A 240M (incorporated by reference; see | 75,000 | 30 | | § 171.7 of this subchapter),
Type 304L | 70,000 | 30 | | ASTM A 240/A 240M (incorporated by reference; see § 171.7 of this subchapter), | | | | Type 316ASTM A 240/A 240M (incor- | 75,000 | 30 | | porated by reference; see § 171.7 of this subchapter),
Type 316L | 70,000 | 30 | | Type 510L | 70,000 | 50 | Maximum stresses to be used in calculations. ¹Maximum stresses to be used in calculations. ² High alloy steel materials used to fabricate tank and expansion dome, when used, must be tested in accordance with Practice A of ASTM Specification A 262 titled, "Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels" (IBR; see §171.7 of this sub-chapter). If the specimen does not pass Practice A, Practice B or C must be used and the corrosion rates may not exceed the following: | Test procedure | Material | Corrosion rate i.p.m. | |----------------|---------------------------------|-----------------------| | Practice B | Types 304, 304L, 316, and 316L. | 0.0040 | | Practice C | Type 304L | .0020 | Type 304L and Type 316L test specimens must be given a sensitizing treatment prior to testing. (A typical sensitizing treatment is 1 hour at 1250 F.) (e) Nickel plate: Nickel plate must comply with the following specification (IBR, see §171.7 of this subchapter): | Specifications | Minimum
tensile
strength
(psi) weld-
ed condi-
tion ¹ | Minimum
elongation
in 2 inches
(percent)
weld metal
(longitu-
dinal) | |-------------------------|---|--| | ASTM B 162 ² | 40,000 | 20 | (f) Manganese-molybdenum steel plate: Manganese-molybdenum steel plate must be suitable for fusion welding and comply with the following specification (IBR, see §171.7 of this subchapter): | Specifications | Minimum
tensile
strength
(p.s.i.)
welded
condition ¹ | Minimum
elongation
in 2 inches
(percent)
weld metal
(longitu-
dinal) | |-------------------|--|--| | ASTM A 302, Gr. B | 80,000 | 20 | ¹ Maximum stresses to be used in calculations. - (g) All parts and items of construction in contact with the lading must be made of material compatible with plate material and not subject to rapid deterioration by the lading, or be coated or lined with suitable corrosion resistant material. - (h) All external projections that may be in contact with the lading and all castings, forgings, or fabrications used for fittings or attachments to tank and expansion dome, when used, in contact with lading must be made of material to an approved specification. See AAR Specifications for Tank Cars, appendix M, M4.05 (IBR, see §171.7 of this subchapter) for approved material specifications for castings for fittings. [Amdt. 179–10, 36 FR 21349, Nov. 9, 1971; 36 FR 21893, Nov. 17, 1971, as amended by Amdt.179-28, 46 FR 49906, Oct. 8, 1981; Amdt. 179-40, 52 FR 13046, Apr. 20, 1987; Amdt. 179-52, 61 FR 28680, June 5, 1996; 66 FR 45186, Aug. 28, 2001; 67 FR 51660, Aug. 8, 2002; 68 FR 75761, Dec. 31, 2003; 70 FR 34076, June 13, 2005] ## §179.200-8 Tank heads. - (a) All external tank heads must be an ellipsoid of revolution in which the major axis must equal the diameter of the shell and the minor axis must be one-half the major axis. - (b) Internal compartment tank heads may be 2:1 ellipsoidal, 3:1 ellipsoidal, or flanged and dished to thicknesses as specified in §179.200-6. Flanged and ²0 temper only. ³Weld filler metal 5556 must not be used. ⁴Maximum stresses to be used in calculations ### § 179.200-9 dished heads must have main inside radius not exceeding 10 feet, and inside knuckle radius must not be less than 3¾ inches for steel, alloy steel, or nickel tanks, and not less than 5 inches for aluminum alloy tanks. [Amdt. 179-10, 36 FR 21350, Nov. 6, 1971] ### §179.200-9 Compartment tanks. (a) When a tank is divided into compartments, by inserting interior heads, interior heads must be inserted in accordance with AAR Specifications for Tank Cars, appendix E, E7.00 (IBR, see §171.7 of this subchapter), and must comply with the requirements specified in §179.201-1. Voids between compartment heads must be provided with at least one tapped drain hole at their lowest point, and a tapped hole at the top of the tank. The top hole must be closed, and the bottom hole may be closed, with not less than three-fourths inch and not more than 11/2-inch solid pipe plugs having NPT threads. (b) When the tank is divided into compartments by constructing each compartment as a separate tank, these tanks shall be joined together by a cylinder made of plate, having a thickness not less than that required for the tank shell and applied to the outside surface of tank head flanges. The cylinder shall fit the straight flange portion of the compartment tank head tightly. The cylinder shall contact the head flange for a distance of at least two times the plate thickness, or a minimum of 1 inch, whichever is greater. The cylinder shall be joined to the head flange by a full fillet weld. Distance from head seam to cylinder shall not be less than 1½ inches or three times the plate thickness, whichever is greater. Voids created by the space between heads of tanks joined together to form a compartment tank shall be provided with a tapped drain hole at their lowest point and a tapped hole at top of tank. The top hole shall be closed and the bottom hole may be closed with solid pipe plugs not less than 34 inch nor more than 1½ inches having NPT threads. [29 FR 18995, Dec. 29, 1964. Redesignated at 32 FR 5606, Apr. 5, 1967, and amended by Amdt. 179–10, 36 FR 21350, Nov. 6, 1971; 66 FR 45186, Aug. 28, 2001; 68 FR 75761, Dec. 31, 2003] ### §179.200-10 Welding. (a) All joints shall be fusion-welded in compliance with the requirements of AAR Specifications for Tank Cars, appendix W (IBR, see §171.7 of this subchapter). Welding procedures, welders and fabricators shall be approved. (b) Welding is not permitted on or to ductile iron or malleable iron fittings. [29 FR 18995, Dec. 29, 1964. Redesignated at 32 FR 5606, Apr. 5, 1967, and amended by Amdt. 179–10, 36 FR 21350, Nov. 6, 1971; 68 FR 75761, Dec. 31, 2003] # §179.200-11 Postweld heat treatment. When specified in §179.201-1, after welding is complete, postweld heat treatment must be in compliance with the requirements of AAR Specifications for Tank Cars, appendix W (IBR, see §171.7 of this subchapter). [68 FR 75761, Dec. 31, 2003] #### §179.200-13 Manway ring or flange, pressure relief device flange, bottom outlet nozzle flange, bottom washout nozzle flange and other attachments and openings. - (a) These attachments shall be fusion welded to the tank and reinforced in an approved manner in compliance with the requirements of appendix E, figure 10, of the AAR Specifications for Tank Cars (IBR, see §171.7 of this subchapter). - (b) The opening in the manway ring must be at least 16 inches in diameter except that acid resistant lined manways must be at least 18 inches in diameter before lining. - (c) The manway ring or flange, shall be made of cast, forged or fabricated metal. The metal of the dome, tank, or nozzle must be compatible with the manway ring or flange, so that they may be welded together. - (d) The openings for the manway or other fittings shall be reinforced in an approved manner. [Amdt. 179-40, 52 FR 13047, Apr. 20, 1987, as amended at 68 FR 75761, Dec. 31, 2003] # § 179.200-14 Expansion capacity. (a) Tanks shall have expansion capacity as prescribed in this subchapter. This capacity shall be provided in the tank for Class DOT-111A cars, or in a